Difference between revisions of "Spring 2025: Software Engineering Lab"

From MKWiki
Jump to navigation Jump to search
Line 97: Line 97:
 
| style="width: 45%" | Title 1  
 
| style="width: 45%" | Title 1  
 
| style="width: 25%" |   
 
| style="width: 25%" |   
# XYZ
+
# Name (RollNo.)
# XYZ
+
# Name (RollNo.)
# XYZ
+
# Name (RollNo.)
# XYZ
+
# Name (RollNo.)
 
|  
 
|  
 
* Report:
 
* Report:
Line 106: Line 106:
 
|-
 
|-
 
|2|| Title 2||  
 
|2|| Title 2||  
# XYZ
+
# Name (RollNo.)
# XYZ
+
# Name (RollNo.)
# XYZ
+
# Name (RollNo.)
# XYZ
+
# Name (RollNo.)
  
 
|  
 
|  
* Dataset:
 
* Report:
 
* Project Presentation:
 
|-
 
|3|| Title 3 ||
 
# '''Himanshu Kumar (25016)'''
 
# Kanan Pal (25072)
 
# Khushboo Yadav (25082)
 
# Diksha Joshi (25091)
 
|
 
* Dataset:
 
* Report:
 
* Project Presentation:
 
|-
 
|4|| Title 4 ||
 
# Arihant (25003)
 
# '''Ayush Pundir (25027)'''
 
# Pratyush (25060)
 
# Ashish (25066)
 
|
 
* Dataset:
 
* Report:
 
* Project Presentation:
 
|-
 
|5|| Title 5 ||
 
# Vidhan (25044)
 
# '''Sandeep Kumar Sharma (25047)'''
 
# Ayushman Pandey (25094)
 
# Tanishk Panchal (25095)
 
|
 
* Dataset:
 
* Report:
 
* Project Presentation:
 
|-
 
|6|| Title 6||
 
# Devesh Chauhan (25011)
 
# Shatrughan  (25084)
 
# Om Ranjan (25085)
 
# '''Aman Sagar (25086)'''
 
|
 
* Dataset:
 
* Report:
 
* Project Presentation:
 
|-
 
|7|| Olympic Data Analysis and Prediction ||
 
# Kusum (25002)
 
# '''Aditya Kumar (25012)'''
 
# Divyanshi (25021)
 
# Tushar Rana (25064)
 
|
 
* Dataset:
 
* Report:
 
* Project Presentation:
 
|-
 
|8|| Credit Card Fraud Detection ||
 
# Ritesh Dhawan (25037)
 
# Bitthal Varshney (25041)
 
# Ansh Raj (25081)
 
# '''Uday Raj Verma (25083)'''
 
# Astitwa Rawat (25088)
 
|
 
* Dataset:
 
* Report:
 
* Project Presentation:
 
|-
 
|9|| CreditMap: Exploring Credit Score Patterns through Data Mining ||
 
# Himanshu Singh (25017)
 
# '''Garvit Kumar (25018)'''
 
# Mayank  (25022)
 
# Abhishek Kumar Singh(25032)
 
|
 
* Dataset:
 
* Report:
 
* Project Presentation:
 
|-
 
|10|| Movie Recommendation System ||
 
# Tanya Agrahari (25030)
 
# Prakash Mishra (25035)
 
# '''Adarsh Singh (25074)'''
 
# Shivam Verma (25078)
 
|
 
* Dataset:
 
* Report:
 
* Project Presentation:
 
|-
 
|11|| Wine Quality Prediction ||
 
# '''Shivam Soni (250xx)'''
 
# ⁠Kashif (250xx)
 
# Akash Pathak (250xx)
 
# ⁠Priyanshu Sachan (250xx)
 
|
 
* Dataset:
 
 
* Report:
 
* Report:
 
* Project Presentation:
 
* Project Presentation:
 
|}
 
|}

Revision as of 13:12, 15 December 2024

Instructions

  • Please be on time to avoid the Attendance Penalty.
  • Please put your mobile phone in the Silent Mode.
  • Each lab assignment needs to be submitted in the Google Classroom for evaluation(will be notified in the GC lab-wise, submit before the deadline).
  • Turn off(shut down) your assigned computer and arrange the chair before you leave the lab.

Guidelines

Lab 0: Getting Started ( week of 05th & 12th August 2024 )

Q. NO. Program Practical No. Remarks
1 https://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial1/tutorial1.html Practice Set No. 1 Introduction to Python
2 https://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial2/tutorial2.html Practice Set No. 2 Introduction to Numpy and Pandas
3 https://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial3/tutorial3.html Practice Set No. 3 Data Exploration

Lab 1: ( week of 19th & 26th August 2024 )

Q. NO. Program Practical No. Remarks
1 Apply data cleaning techniques on any dataset (e.g. Chronic Kidney Disease dataset from UCI repository). Techniques may include handling missing values, outliers and inconsistent values. Also, a set of validation rules may be specified for the particular dataset and validation checks performed. Practical No. 1 Dataset: kidneyDisease.csv

Download from Kaggle: Chronic KIdney Disease dataset
Tutorial: Tutorial on Handling Missing values

Lab 2: ( week of 2nd & 9th September 2024 )

Q. NO. Program Practical No. Remarks
1 Apply data pre-processing techniques such as standardization/normalization, transformation, aggregation, discretization/binarization, sampling etc. on any dataset Practical No. 2 Dataset: rain.csv

Download from data.gov.in: Rainfall in India

Lab 3: ( week of 16th, 23rd & 30thSeptember 2024 )

Q. NO. Program Practical No. Remarks
1 Writing/Review of Chapter 1, Chapter 3, and Chapter 4 of Project Report Project Work

Lab 4: ( week of 7th October 2024 )

Q. NO. Program Practical No. Remarks
1 Apply simple K-means algorithm for clustering any dataset. Compare the performance of clusters by varying the algorithm parameters. For a given set of parameters, plot a line graph depicting MSE obtained after each iteration. Practical No. 3 Dataset: Mall_Customers.csv

Download from data from kaggle: Mall Customer Segmentation Data

Projects

Team No. Project Title Team Members Outcomes/Remarks
1 Title 1
  1. Name (RollNo.)
  2. Name (RollNo.)
  3. Name (RollNo.)
  4. Name (RollNo.)
  • Report:
  • Project Presentation:
2 Title 2
  1. Name (RollNo.)
  2. Name (RollNo.)
  3. Name (RollNo.)
  4. Name (RollNo.)
  • Report:
  • Project Presentation: