Difference between revisions of "Spring 2023: Android Programming (PSCS)"

From MKWiki
Jump to navigation Jump to search
(Created page with "AP Th")
 
Line 1: Line 1:
AP Th
+
== Logistics ==
 +
*Class Timings: '''Fridays''' 1:00 pm - 3:00 pm (5<sup>th</sup> and 6<sup>th</sup> slot)
 +
*Classroom: R34
 +
*Lab Timings: '''Thursdays''' 1:00 pm - 5:00 pm (5<sup>th</sup> - 8<sup>th</sup>slots)
 +
*Labs: CS Lab 3
 +
 
 +
== Course Overview ==
 +
* As per the Delhi University [http://cs.du.ac.in/uploads/ug_guidelines/BSc-H-CS/V/BHCS11-Internet%20Technologies1.pdf Course Guidelines]
 +
 
 +
== Lectures ==
 +
{| class="wikitable" style="text-align: left; width: 100%";
 +
|-
 +
!Lecture
 +
!Topic
 +
!Lecture Slides
 +
!Readings
 +
|-
 +
| style="width: 10%; " | Unit 1 / Chapter 1
 +
| style="width: 60%" |  '''''Introduction''''': 1.1 - What Is Data Mining? 1.2 Challenges 1.3 Data Mining Origins 1.4 Data Mining Tasks
 +
| style="width: 15%" | [http://mkbhandari.com/mkwiki/data/spring2023/DM/1Intro.pdf '''1Intro.pdf'''] 
 +
| Chapter 1 (CB1)
 +
|-
 +
| Unit 2 / Chapter 2
 +
|  '''''Data mining techniques''''':
 +
|  [http://mkbhandari.com/mkwiki/data/spring2023/DM/2dmt.pdf '''2DMT.pdf'''] 
 +
| Chapter 2 (CB2)
 +
|}
 +
 
 +
== Assignments and Tests==
 +
===Class Assignments===
 +
* '''''Assignment No. 1''''',
 +
* '''''Assignment No. 2''''',
 +
 
 +
===Tests and Quizzes===
 +
* '''Test 1''' :
 +
* '''Quiz 1''' :
 +
 
 +
== Resources ==
 +
===Course Books:===
 +
* '''CB1''': Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Pearson Education. <br>
 +
===References:===
 +
* '''R2''': Data Mining: Concepts and Techniques, 3nd edition,Jiawei Han and Micheline Kamber. <br>
 +
* '''R3''': Data Mining: A Tutorial Based Primer, Richard Roiger, Michael Geatz, Pearson Education 2003. <br>
 +
* '''R4''': Introduction to Data Mining with Case Studies, G.K. Gupta, PHI 2006. <br>
 +
* '''R5''': Insight into Data mining: Theory and Practice, Soman K. P., DiwakarShyam, Ajay V., PHI 2006

Revision as of 19:19, 3 February 2023

Logistics

  • Class Timings: Fridays 1:00 pm - 3:00 pm (5th and 6th slot)
  • Classroom: R34
  • Lab Timings: Thursdays 1:00 pm - 5:00 pm (5th - 8thslots)
  • Labs: CS Lab 3

Course Overview

Lectures

Lecture Topic Lecture Slides Readings
Unit 1 / Chapter 1 Introduction: 1.1 - What Is Data Mining? 1.2 Challenges 1.3 Data Mining Origins 1.4 Data Mining Tasks 1Intro.pdf Chapter 1 (CB1)
Unit 2 / Chapter 2 Data mining techniques: 2DMT.pdf Chapter 2 (CB2)

Assignments and Tests

Class Assignments

  • Assignment No. 1,
  • Assignment No. 2,

Tests and Quizzes

  • Test 1 :
  • Quiz 1 :

Resources

Course Books:

  • CB1: Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Pearson Education.

References:

  • R2: Data Mining: Concepts and Techniques, 3nd edition,Jiawei Han and Micheline Kamber.
  • R3: Data Mining: A Tutorial Based Primer, Richard Roiger, Michael Geatz, Pearson Education 2003.
  • R4: Introduction to Data Mining with Case Studies, G.K. Gupta, PHI 2006.
  • R5: Insight into Data mining: Theory and Practice, Soman K. P., DiwakarShyam, Ajay V., PHI 2006