Difference between revisions of "Spring 2025: Software Engineering Lab"

From MKWiki
Jump to navigation Jump to search
Line 18: Line 18:
 
| style="width: 8%"  | 1  
 
| style="width: 8%"  | 1  
 
| style="width: 60%" | https://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial1/tutorial1.html
 
| style="width: 60%" | https://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial1/tutorial1.html
| style="width: 15%" |  Practice Set No. 1
+
| style="width: 15%" |   
 
| Introduction to Python  
 
| Introduction to Python  
 
|-
 
|-
Line 35: Line 35:
 
|-
 
|-
 
| style="width: 8%"  | 1  
 
| style="width: 8%"  | 1  
| style="width: 60%" | Apply data cleaning techniques on any dataset (e.g. Chronic Kidney Disease dataset from UCI repository). Techniques may include handling missing values, outliers and inconsistent values. Also, a set of validation rules may be specified for the particular dataset and validation checks performed.
+
| style="width: 60%" | Problem Statement
| style="width: 15%" |  Practical No. 1
+
| style="width: 15%" |  Chapter 1
 
| '''Dataset:''' [http://mkbhandari.com/mkwiki/data/fall2024/dm/datasets/kidneyDisease.csv '''kidneyDisease.csv'''] <br>
 
| '''Dataset:''' [http://mkbhandari.com/mkwiki/data/fall2024/dm/datasets/kidneyDisease.csv '''kidneyDisease.csv'''] <br>
 
'''Download from Kaggle:''' [https://www.kaggle.com/datasets/mansoordaku/ckdisease Chronic KIdney Disease dataset] <br>
 
'''Download from Kaggle:''' [https://www.kaggle.com/datasets/mansoordaku/ckdisease Chronic KIdney Disease dataset] <br>
Line 51: Line 51:
 
|-
 
|-
 
| style="width: 8%"  | 1  
 
| style="width: 8%"  | 1  
| style="width: 60%" | Apply data pre-processing techniques such as standardization/normalization, transformation, aggregation, discretization/binarization, sampling etc. on any dataset
+
| style="width: 60%" | Process Model
| style="width: 15%" | Practical No. 2
+
| style="width: 15%" | Chapter 2
 
| '''Dataset:''' [http://mkbhandari.com/mkwiki/data/fall2024/dm/datasets/rain.csv '''rain.csv'''] <br>
 
| '''Dataset:''' [http://mkbhandari.com/mkwiki/data/fall2024/dm/datasets/rain.csv '''rain.csv'''] <br>
 
'''Download from data.gov.in:''' [https://www.data.gov.in/catalog/rainfall-india Rainfall in India]  
 
'''Download from data.gov.in:''' [https://www.data.gov.in/catalog/rainfall-india Rainfall in India]  
Line 66: Line 66:
 
|-
 
|-
 
| style="width: 8%"  | 1  
 
| style="width: 8%"  | 1  
| style="width: 60%" | Writing/Review of Chapter 1, Chapter 3, and Chapter 4 of Project Report
+
| style="width: 60%" | Rquirement Analysis & Modelling
| style="width: 15%" |  Project Work
+
| style="width: 15%" |   
 
|  
 
|  
 
|}
 
|}
Line 80: Line 80:
 
|-
 
|-
 
| style="width: 8%"  | 1  
 
| style="width: 8%"  | 1  
| style="width: 60%" | Apply simple K-means algorithm for clustering any dataset. Compare the performance of clusters by varying the algorithm parameters. For a given set of parameters, plot a line graph depicting MSE obtained after each iteration.
+
| style="width: 60%" | Software Requirement Specification(SRS)
 
| style="width: 15%" |  Practical No. 3
 
| style="width: 15%" |  Practical No. 3
 
| '''Dataset:''' [http://mkbhandari.com/mkwiki/data/fall2024/dm/datasets/Mall_Customers.csv '''Mall_Customers.csv'''] <br>
 
| '''Dataset:''' [http://mkbhandari.com/mkwiki/data/fall2024/dm/datasets/Mall_Customers.csv '''Mall_Customers.csv'''] <br>

Revision as of 13:18, 15 December 2024

Instructions

  • Please be on time to avoid the Attendance Penalty.
  • Please put your mobile phone in the Silent Mode.
  • Each lab assignment needs to be submitted in the Google Classroom for evaluation(will be notified in the GC lab-wise, submit before the deadline).
  • Turn off(shut down) your assigned computer and arrange the chair before you leave the lab.

Guidelines

Lab 0: Getting Started ( week of 05th & 12th August 2024 )

Q. NO. Program Practical No. Remarks
1 https://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial1/tutorial1.html Introduction to Python
2 https://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial2/tutorial2.html Practice Set No. 2 Introduction to Numpy and Pandas
3 https://www.cse.msu.edu/~ptan/dmbook/tutorials/tutorial3/tutorial3.html Practice Set No. 3 Data Exploration

Lab 1: ( week of 19th & 26th August 2024 )

Q. NO. Program Practical No. Remarks
1 Problem Statement Chapter 1 Dataset: kidneyDisease.csv

Download from Kaggle: Chronic KIdney Disease dataset
Tutorial: Tutorial on Handling Missing values

Lab 2: ( week of 2nd & 9th September 2024 )

Q. NO. Program Practical No. Remarks
1 Process Model Chapter 2 Dataset: rain.csv

Download from data.gov.in: Rainfall in India

Lab 3: ( week of 16th, 23rd & 30thSeptember 2024 )

Q. NO. Program Practical No. Remarks
1 Rquirement Analysis & Modelling

Lab 4: ( week of 7th October 2024 )

Q. NO. Program Practical No. Remarks
1 Software Requirement Specification(SRS) Practical No. 3 Dataset: Mall_Customers.csv

Download from data from kaggle: Mall Customer Segmentation Data

Projects

Team No. Project Title Team Members Outcomes/Remarks
1 Title 1
  1. Name (RollNo.)
  2. Name (RollNo.)
  3. Name (RollNo.)
  4. Name (RollNo.)
  • Report:
  • Project Presentation:
2 Title 2
  1. Name (RollNo.)
  2. Name (RollNo.)
  3. Name (RollNo.)
  4. Name (RollNo.)
  • Report:
  • Project Presentation: