Spring 2023: Data Mining

From MKWiki
Revision as of 10:44, 27 February 2023 by Mkwiki (talk | contribs) (→‎Lectures)
Jump to navigation Jump to search

Logistics

  • Class Timings: Wednesdays 1:00 pm - 3:00 pm (5th and 6th slot)and Thursdays 10:45 am - 12:45 pm (3rd and 4th slot)
  • Classroom: R33
  • Lab Timings: Mondays 8:45 am - 12:45 pm (1st - 4thslots)
  • Labs: CS Lab 5

Course Overview

Lectures

Lecture Topic Lecture Slides Readings
Unit 1 / Chapter 1 Introduction: 1.1 - What Is Data Mining? 1.2 Challenges 1.3 Data Mining Origins 1.4 Data Mining Tasks 1Intro.pdf Chapter 1 (CB1)
Unit 2 / Chapter 2 Data mining techniques: 2.1- Types of data, 2.2 – Data Quality, 2.3.1 Aggregation, 2.3.2 Sampling, 2.3.3 Dimensionality reduction – upto pg 51, 2.3.4 Feature subset selection upto pg 52, 2.4.5 Feature creation upto pg 55, 2.3.6 Discretization upto pg 59, 2.3.7 variable transformations 2.4.3 Dissimilarity among data objects 2.4.4 similarity among data objects 2DMT.pdf Chapter 2 (CB2)

Assignments and Tests

Class Assignments

  • Assignment No. 1,
  • Assignment No. 2,

Tests and Quizzes

  • Test 1 :
  • Test 2 :

Projects

  • Project 1 :
  • Project 2 :
  • Project 3 :
  • Project 4 :
  • Project 5 :
  • Project 6 :
  • Project 7 :
  • Project 8 :
  • Project 9 :
  • Project 10 :

Resources

Course Books:

  • CB1: Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Pearson Education.

References:

  • R2: Data Mining: Concepts and Techniques, 3nd edition,Jiawei Han and Micheline Kamber.
  • R3: Data Mining: A Tutorial Based Primer, Richard Roiger, Michael Geatz, Pearson Education 2003.
  • R4: Introduction to Data Mining with Case Studies, G.K. Gupta, PHI 2006.
  • R5: Insight into Data mining: Theory and Practice, Soman K. P., DiwakarShyam, Ajay V., PHI 2006