Spring 2023: Data Mining

From MKWiki
Revision as of 22:59, 31 January 2023 by Mkwiki (talk | contribs) (→‎Projects)
Jump to navigation Jump to search

Logistics

  • Class Timings: Wednesdays 1:00 pm - 3:00 pm (5th and 6th slot)and Thursdays 10:45 am - 12:45 pm (3rd and 4th slot)
  • Classroom: R33
  • Lab Timings: Mondays 8:45 am - 12:45 pm (1st - 4thslots)
  • Labs: CS Lab 5

Course Overview

Lectures

Lecture Topic Lecture Slides Readings
Unit1/Chapter1 Introduction: 1.1 - What Is Data Mining? 1.2 Challenges 1.3 Data Mining Origins 1.4 Data Mining Tasks Introduction.pdf Chapter 1 (R1)

Assignments and Tests

Class Assignments

  • Assignment No. 1,
  • Assignment No. 2,

Tests and Quizzes

  • Test 1 :


Projects

  • Project 1 :
  • Project 2 :
  • Project 3 :
  • Project 4 :
  • Project 5 :
  • Project 6 :
  • Project 7 :
  • Project 8 :
  • Project 9 :
  • Project 10 :

Resources

Course Books:

  • CB1: Introduction to Data Mining, Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Pearson Education.

References:

  • R2: Data Mining: Concepts and Techniques, 3nd edition,Jiawei Han and Micheline Kamber.
  • R3: Data Mining: A Tutorial Based Primer, Richard Roiger, Michael Geatz, Pearson Education 2003.
  • R4: Introduction to Data Mining with Case Studies, G.K. Gupta, PHI 2006.
  • R5: Insight into Data mining: Theory and Practice, Soman K. P., DiwakarShyam, Ajay V., PHI 2006